AIS-based maritime anomaly traffic detection: A review
Expert Systems with Applications, ISSN: 0957-4174, Vol: 231, Page: 120561
2023
- 29Citations
- 51Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Maritime transportation plays an essential role in global trade. Due to the huge number of vessels worldwide, there is also a non-negligible volume of Maritime incidents such as collisions/sinking and illegal events ( e.g., piracy, smuggling, and unauthorized fishing). Electronic equipment/systems, such as radars and Automatic Identification Systems (AIS), have contributed to improving maritime situational awareness. AIS provides one of the fundamental sources of vessel kinematics and static data. Today, many approaches are focused on automatically detecting the vessels’ traffic behavior and discovering useful patterns and deviations from those data. These studies contribute to detecting suspicious activities and anomalous trajectories, whose developed techniques could be applied in the surveillance systems, helping the authorities to anticipate proper actions. Several concerns and difficulties are involved in the analyses of vessel kinematics data: how to deal with big data generated, inconsistencies, irregular updates, dynamic data, unlabeled data, and evaluation. This article presents the approaches, constraints, and challenges in maritime traffic anomaly detection research, presenting a review, a taxonomy, and a discussion of the proposed approaches.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0957417423010631; http://dx.doi.org/10.1016/j.eswa.2023.120561; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85162089996&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0957417423010631; https://dx.doi.org/10.1016/j.eswa.2023.120561
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know