Boron removal by using vacuum assisted air gap membrane distillation (VAGMD)
Environmental Technology & Innovation, ISSN: 2352-1864, Vol: 26, Page: 102395
2022
- 16Citations
- 38Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Vacuum-assisted air gap membrane distillation was used to remove boron from different waters in this study. Four different vacuum pressures (0.02 bar, 0.04 bar, 0.06 bar, and 0.08 bar) were applied and air gap membrane distillation (AGMD) configuration was also used to compare the effect of vacuum pressures on the process. Six commercial hydrophobic membranes which have the 110° contact angle value at least were used. Membranes with a 44.18 cm 2 effective area were tested with saline water, synthetic boron solution, and real geothermal water as the feed solutions which is the only study with VAGMD in the literature. Salt removal efficiencies of all experiments were higher than 98.2%. Permeate boron concentrations of synthetic boron solution and real geothermal water were lower than the 0.5 mg/L limit value for drinking water set by WHO and in terms of removal efficiency it means higher than 99% removal efficiency. Vacuum pressures enhanced the water fluxes as expected and also decreased the specific energy consumption.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2352186422000657; http://dx.doi.org/10.1016/j.eti.2022.102395; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85124584797&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2352186422000657; https://dx.doi.org/10.1016/j.eti.2022.102395
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know