Effects of offset jet width on periodic flow in a dual jet
European Journal of Mechanics - B/Fluids, ISSN: 0997-7546, Vol: 109, Page: 253-270
2025
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The primary aim of this work is to investigate the impact of the offset jet width on the unsteady flow characteristics of a turbulent dual jet, which consists of a wall jet and an offset jet. A computational fluid dynamics code is developed to solve the unsteady Reynolds-averaged Navier–Stokes (URANS) equations. The width of the offset jet is varied while keeping the width of the wall jet constant at the separation distance between the two jets. When the ratio of the offset jet width ( w ) to the separation distance ( d ) is w/d=0.5, the flow field exhibits a periodic vortex shedding phenomenon. Conversely, when w/d=0.4, the flow field remains steady. The shedding phenomenon is discernible even when w/d=2. The instantaneous velocity components display sinusoidal oscillations at 0.5≤w/d≤2. Applying the fast Fourier transform to these sinusoidal signals yields a distinct frequency peak at the vortex shedding frequency. Within the range of 0.5≤w/d≤2, the shedding frequency decreases as the width of the offset jet increases. This trend continues until it reaches a constant value at w/d=1.4. This indicates that the width of the offset jet has a notable influence on the shedding phenomenon within the range of 0.5≤w/d≤1.4. For 1.41.4 ).
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know