Review on polydopamine supramolecular ordering – mechanism elucidation and application in 2D nanocomposites fabrication
European Polymer Journal, ISSN: 0014-3057, Vol: 221, Page: 113530
2024
- 2Citations
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Polydopamine has gained recognition in surface modification and construction of functional nanocomposites, among others, due to its extraordinary adhesive properties. However, despite the clear tendency to form in a supramolecularly ordered manner, this mechanism has remained almost completely overlooked. At the same time, polymerization-induced self-assembly has been a hot topic in recent years. In this review, we emphasize the laws and relationships governing the formation of polydopamine nanoparticles, functional coatings and free-standing films in an ordered or semi-ordered manner. We took advantage of both computer simulations and basic research to summarize the state of the art and to set possible guidelines for further research work aimed at full understanding and precise control of the polydopamine supramolecular ordering process. We also present examples of application studies in which the self-assembly tendency of polydopamine and reversible cross-linking through physical interactions were used to create advanced 2D nanocomposites, hydrogels, etc. Finally, we also present future perspectives and research guidelines and encourage further work on this exceptional biomimetic polymer.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know