Frontal polymerization of acrylamide/GelMA/gelatin hydrogels with controlled mechanical properties and inherent self-recovery
European Polymer Journal, ISSN: 0014-3057, Vol: 221, Page: 113551
2024
- 1Citations
- 10Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Low mechanical resistance represents one of the significant problems of hydrogels, limiting their applicability in many fields. One approach to overcome this issue is synthesizing interpenetrating polymeric networks. In this work, the frontal polymerization technique was used to synthesize two series of novel hydrogels: (i) poly(acrylamide) (PAAm)-based hydrogels copolymerized/crosslinked with methacrylate gelatin (GelMA) (AAm-GelMA copolymer networks), and (ii) semi-IPN made of AAm-GelMA copolymer networks and a physically crosslinked gelatin network. With the final objective of improving the rheological, mechanical, morphological, thermal, and swelling properties of PAAm hydrogels, GelMA with two different degrees of methacrylation (30 and 75 mol%) was used. Interactions between GelMA chains, which give rise to physical network formation (i.e., GelMA-GelMA interactions), resulted in very efficient crosslinking for PAAm-based hydrogels, requiring a significantly lower methacrylic group concentration (0.04 mol%) for hydrogel formation compared to N,N′-methylene-bis-acrylamide (1 mol%), which is the agent typically used as a crosslinker for PAAm. Furthermore, the degree of GelMA methacrylation markedly affected the properties of the hydrogels. For example, regarding the swelling degree, hydrogels containing 22 wt% of GELMA30 had an SR% of 2870, while those containing the same amount of GELMA75 swelled much less (870 %). The introduction of gelatin as a secondary network in semi-IPNs influenced the rheological and mechanical properties, resulting in increased hydrogel modulus and stiffness attributed to enhanced physical interactions within the network. Finally, dynamic rheological shear strain and cyclic loading compression tests demonstrated exceptional recovery capabilities in all hydrogel formulations: samples subjected to alternating low (0.1 %) and high (300 % or 10 %) shear strain demonstrated a complete and prompt recovery of G′ and G″ values.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know