Effects of diabetes mellitus on biomechanical properties of the rabbit cornea
Experimental Eye Research, ISSN: 0014-4835, Vol: 161, Page: 82-88
2017
- 36Citations
- 36Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations36
- Citation Indexes36
- 36
- CrossRef27
- Captures36
- Readers36
- 36
- Mentions1
- News Mentions1
- 1
Most Recent News
Changes in Corneal Biomechanical Properties With Different Corneal Cross-linking Irradiances
Corneal cross-linking (CXL) with riboflavin and ultraviolet-A (UVA), first developed by Spoerl et al. in 1997,1 is a treatment modality designed to halt the progression of keratoconus and is considered a less invasive and lower cost option compared with keratoplasty. Unlike other treatments, the main role of CXL is to modify the intrinsic biomechanical properties of the collagen fibers.2 CXL incre
Article Description
To investigate the effects of diabetes on the biomechanical behavior of cornea in alloxan-induced diabetic rabbits. Diabetes mellitus (DM) was induced in 20 rabbits using alloxan, while another 20 age- and weight-matched non-diabetic rabbits served as controls. Eyes were enucleated after 8 weeks of inducing diabetes and the whole cornea was removed with a 3 mm wide scleral ring and tested under inflation conditions with an internal pressure range of 2.0–30.0 mmHg to determine their stress-strain behavior using an inverse analysis process. The blood glucose level (BG), advanced glycosylation end products (AGEs), central corneal thickness (CCT) and intraocular pressure (IOP) increased significantly in the DM group. There were statistically significant correlations between BG and AGEs (r = 0.768, p = 0.00), and between AGEs and CCT variation upon induction of DM (r = 0.594, p = 0.00). The tangent modulus (Et) of the cornea at four stress levels (1–4 kPa, equivalent to approximately IOP of 7.5, 15, 22.5 and 30 mmHg, respectively) was significantly higher in diabetic rabbits than in the control group (p < 0.05). Further, Et at stress of 2 kPa (which corresponded to the average IOP for the control group) was significantly correlated with BG (r = 0.378, p < 0.05), AGEs (r = 0.496, p < 0.05) and CCT variation upon induction of DM (r = 0.439, p < 0.05). IOP, as measured by contact tonometry, was also significantly correlated with both CCT (r = 0.315, p < 0.05) and Et at 2 kPa (r = 0.329, p < 0.05), and even after correcting for the effects of CCT and Et, IOP still significantly increased with both AGEs (r = 0.772, p = 0.00) and BG (r = 0.762, p = 0.00). The cornea of diabetic rabbits showed a significant increase in mechanical stiffness as evidenced by increases in corneal thickness and tangent modulus. The Et increase may be explained by a non-enzymatic cross-linking of collagen fibrils mediated by AGEs due to the high blood glucose levels in diabetes. The study also found significant IOP increases with higher blood glucose level even after controlling the effects of both corneal thickness and tangent modulus.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0014483516303876; http://dx.doi.org/10.1016/j.exer.2017.05.015; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85020807200&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/28603017; https://linkinghub.elsevier.com/retrieve/pii/S0014483516303876; https://dx.doi.org/10.1016/j.exer.2017.05.015
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know