PlumX Metrics
Embed PlumX Metrics

Tyrosine phosphorylation of SHIP promotes its proteasomal degradation

Experimental Hematology, ISSN: 0301-472X, Vol: 38, Issue: 5, Page: 392-402.e1
2010
  • 39
    Citations
  • 0
    Usage
  • 61
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

The activity of the SH2-containing-phosphatidylinositol-5′-phosphatase (SHIP, also known as SHIP1), a critical hematopoietic-restricted negative regulator of the PI3 kinase (PI3K) pathway, is regulated in large part via its protein levels. We sought to determine the mechanism(s) involved in its downregulation by BCR-ABL and by interleukin (IL)-4. We used Ba/F3 p210-tetOFF cells to study the downregulation of SHIP by BCR-ABL and bone marrow−derived macrophages to study SHIP's downregulation by IL-4. We show herein that BCR-ABL downregulates SHIP, but not SHIP2 or PTEN, and this can be blocked with the Src kinase inhibitor PP2, which inhibits the tyrosine phosphorylation of SHIP, or with the proteasomal inhibitor MG-132. We also show, using anti-SHIP immunoprecipitates, that c-Cbl and Cbl-b are associated with SHIP and that BCR-ABL induces SHIP's polyubiquitination. This ubiquitination can be blocked with PP2, consistent with the tyrosine phosphorylation of SHIP acting as a signal for its ubiquitination. In bone marrow−derived macrophages, IL-4 also leads to the proteasomal degradation of SHIP but, unlike in Ba/F3 p210-tetOFF cells, SHIP2 is also proteasomally degraded and the degradation of both inositol phosphatases can be prevented with PP2 or MG-132. Our results suggest that SHIP protein levels can be reduced via BCR-ABL and/or Src family member-induced tyrosine phosphorylation of SHIP because this triggers its polyubiquitination and degradation within the proteasome.

Bibliographic Details

Ruschmann, Jens; Ho, Victor; Antignano, Frann; Kuroda, Etsushi; Lam, Vivian; Ibaraki, Mariko; Snyder, Kim; Kim, Connie; Flavell, Richard A; Kawakami, Toshiaki; Sly, Laura; Turhan, Ali G; Krystal, Gerald

Elsevier BV

Biochemistry, Genetics and Molecular Biology; Medicine

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know