The effect of fire location and the reverse stack on fire smoke transport in high-rise buildings
Fire Safety Journal, ISSN: 0379-7112, Vol: 126, Page: 103446
2021
- 13Citations
- 19Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this paper, smoke transport in high-rise buildings through elevator shafts and stairwells is investigated for various fire location and stack effect conditions. For this purpose, a transient network model, Fire-STORM, is upgraded and used. The results are benchmarked by using a computational fluid dynamics (CFD) model. Six scenarios are tested, which are 1 st floor, mid-floor, and top-most floor fires under normal stack (cold environment) and reverse stack (hot environment) conditions. For each scenario, the time history of pressures, temperatures, and soot mass fractions in the fire floors, elevator shafts, and stairwells and the average soot mass fraction in all stories of the building are presented. Overall, Fire-STORM has reasonably good accuracy compared to CFD with significantly faster computation times (90 s on a single core vs. 4 days on 32 cores in parallel). One of the intended uses of this fast low-order model is a data generation engine for neural network modeling of high-rise building fires. As such, one of the unique features of this work is the development of a realistic random heat release rate (HRR) modeling approach created using a Gaussian process.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0379711221001879; http://dx.doi.org/10.1016/j.firesaf.2021.103446; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85115387616&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0379711221001879; https://dx.doi.org/10.1016/j.firesaf.2021.103446
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know