Physically and chemically modified zeolite templated nitrogenous carbons for enhanced hydrogen adsorption
FlatChem, ISSN: 2452-2627, Vol: 48, Page: 100767
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Carbon materials have great potential for hydrogen adsorption due to their remarkable specific surface area, unique pore size characteristics and ability to functionalize with metal or non-metal. In this work, zeolite templated carbons were physically and chemically modified by varying preparation conditions to study their impact on structure and hydrogen adsorption capacity. The resultant templated carbons showed surface area in the range of 608–1665 m 2 /g and pore volume between 0.63 to 1.00 cc/g, with 28–48 % microporosity depending on synthesis conditions. The surface area and pore volume increased with increasing carbon deposition temperature from 650 to 750 °C and both decreased at higher carbon deposition temperature of 850 °C. At heat treatment temperature of 900 °C, the surface area and pore volume of templated carbons were observed to be higher. Incorporation of nitrogen heteroatom in carbon matrix during carbon deposition might have facilitated porosity. Use of argon as carrier gas resulted in the highest surface area (1665 m 2 /g), micropore area (597 m 2 /g) and pore volume (1.0 cc/g). The same templated carbon showed maximum hydrogen adsorption capacity of 0.20 and 2.81 wt% at 25 and –196 °C, respectively at 15 bar. On addition of platinum to templated carbon, the hydrogen adsorption capacity was significantly improved from 0.20 to 0.28 wt% at 25 °C and from 2.81 to 3.24 wt% at –196 °C. The strong affinity of Pt for hydrogen might have enhanced hydrogen adsorption.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know