Measurement and correlation of density and viscosity of n -alcohol–water mixtures at temperatures up to 618 K and at pressures up to 40 MPa
Fluid Phase Equilibria, ISSN: 0378-3812, Vol: 453, Page: 13-23
2017
- 11Citations
- 21Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Densities and viscosities of methanol-water, ethanol-water and n -propanol-water mixtures were measured over the entire range of compositions at temperatures from 523.2 to 618.2 K and at pressures up to 40 MPa. The excess molar volume calculated from the measured density changed negative to positive with increasing alcohol composition at some conditions studied, and this behavior was observed at lower temperature with increasing alkyl chain length. Maxima in composition dependence of viscosity, which is generally observed in ambient conditions, were not present at 618.2 K. Viscosities could be correlated with the Eyring's theory to within 6.4% at temperatures up to 476.2 K. The Peng-Robinson equation of state and Redlich-Kister mixing rule were used to obtain the excess Gibbs energy included in the Eyring's theory, and two binary interaction parameters in the mixing rules were determined by fitting of viscosity data. The densities were predicted using the volume translated Peng-Robinson equation of state to within 3.2% with parameters being determined by viscosity data at temperatures up to 476.2 K. A switching of fitting parameters from binary interaction parameters of the equation of state mixing rule to a proportionality constant, σ, of Eyring's theory was introduced, and viscosities and densities of the normal alcohol-water mixtures could be correlated and predicted to within 4.6% and 8.9%, respectively at temperatures above 476.2 K.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0378381217303369; http://dx.doi.org/10.1016/j.fluid.2017.09.005; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85029168537&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0378381217303369; https://dx.doi.org/10.1016/j.fluid.2017.09.005
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know