Fabrication and characterization of nanoemulsion-coated microgels: Electrostatic deposition of lipid droplets on alginate beads
Food Hydrocolloids, ISSN: 0268-005X, Vol: 71, Page: 149-157
2017
- 20Citations
- 47Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Nanoemulsion-coated microgels were formed by electrostatic deposition of protein-stabilized lipid droplets onto the surfaces of alginate beads. Initially, oil-in-water nanoemulsions stabilized by whey protein isolate (WPI) were fabricated using high-pressure microfluidization, and calcium alginate beads were fabricated by injection of an alginate solution into a calcium solution. The surface potential of the protein-stabilized lipid droplets changed from positive to negative as the pH was increased from 2 to 8, whereas that of the alginate beads remained negative at all pH values. Confocal microscopy, light scattering, turbidity and ζ-potential measurements indicated that a thin layer of lipid droplets adsorbed to the surfaces of the alginate beads at pH values below the isoelectric point of the proteins, which was attributed to electrostatic attraction between the cationic droplets and anionic beads. The apparent shear viscosity of emulsion-bead mixtures was appreciably higher than emulsions with the same fat content at high droplet concentrations (≥20%). This study may provide a novel approach of improving the mouthfeel and texture of foods and beverages, or of reducing the overall fat content of emulsion-based products.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0268005X17305738; http://dx.doi.org/10.1016/j.foodhyd.2017.05.015; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85019369783&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0268005X17305738; https://dx.doi.org/10.1016/j.foodhyd.2017.05.015
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know