Novel transformation products from glucosinolate-derived thioglucose and isothiocyanates formed during cooking
Food Research International, ISSN: 0963-9969, Vol: 157, Page: 111237
2022
- 7Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations7
- Citation Indexes7
- CrossRef3
- Captures7
- Readers7
Article Description
Glucosinolates are plant secondary metabolites occurring in Brassicaceae plants. Upon tissue disruption, these compounds can be enzymatically hydrolyzed into isothiocyanates, which are very reactive and can react with nucleophiles during thermal processes such as boiling. Here, a novel type of glucosinolate degradation product was identified resulting from the reaction of thioglucose with the isothiocyanates sulforaphane or allyl isothiocyanate during aqueous heating. The two heterocyclic compounds 4-hydroxy-3-(4-(methylsulfinyl)butyl)thiazolidine-2-thione and 3-allyl-4-hydroxythiazolidine-2-thione were isolated and their structure elucidated by NMR spectroscopy and high-resolution mass spectrometry. Based on a set of chemical experiments, a reaction mechanism was proposed. Finally, the formation of the two 3-alk(en)yl-4-hydroxythiazolidine-2-thiones was quantified in boiled cabbage samples using a standard addition method in which 92 pmol/g and 19 pmol/g fresh weight of the sulforaphane and allyl isothiocyanate derivatives were found, respectively.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0963996922002940; http://dx.doi.org/10.1016/j.foodres.2022.111237; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85129466643&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/35761548; https://linkinghub.elsevier.com/retrieve/pii/S0963996922002940; https://dx.doi.org/10.1016/j.foodres.2022.111237
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know