Ubiquitin-specific protease 7 promotes ferroptosis via activation of the p53/TfR1 pathway in the rat hearts after ischemia/reperfusion
Free Radical Biology and Medicine, ISSN: 0891-5849, Vol: 162, Page: 339-352
2021
- 212Citations
- 37Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations212
- Citation Indexes212
- 212
- CrossRef60
- Captures37
- Readers37
- 36
Article Description
Iron overload triggers the ferroptosis in the heart following ischemia/reperfusion (I/R) and transferrin receptor 1 (TfR1) charges the cellular iron uptake. Bioinformatics analysis shows that the three molecules of ubiquitin-specific protease 7 (USP7), p53 and TfR1 form a unique pathway of USP7/p53/TfR1. This study aims to explore whether USP7/p53/TfR1 pathway promotes ferroptosis in rat hearts suffered I/R and the underlying mechanisms. The SD rat hearts were subjected to 1 h-ischemia plus 3 h-reperfusion, showing myocardial injury (increase in creatine kinase release, infarct size, myocardial fiber loss and disarray) and up-regulation of USP7, p53 and TfR1 concomitant with an increase of ferroptosis (reflecting by accumulation of iron and lipid peroxidation while decrease of glutathione peroxidase activity). Inhibition of USP7 activated p53 via suppressing deubiquitination, which led to down-regulation of TfR1, accompanied by the decreased ferroptosis and myocardial I/R injury. Next, H9c2 cells underwent hypoxia/reoxygenation (H/R) in vitro to mimic the myocardial I/R model in vivo. Consistent with the results in vivo, inhibition or knockdown of USP7 reduced the H/R injury (decrease of LDH release and necrosis) and enhanced the ubiquitination of p53 along with the decreased levels of p53 and TfR1 as well as the attenuated ferroptosis (manifesting as the decreased iron content and lipid peroxidation while the increased GPX activity). Knockdown of TfR1 inhibited H/R-induced ferroptosis without p53 deubiquitination. Based on these observations, we conclude that a novel pathway of USP7/p53/TfR1 has been identified in the I/R-treated rat hearts, where up-regulation of USP7promotes ferrptosis via activation of the p53/TfR1 pathway.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0891584920315811; http://dx.doi.org/10.1016/j.freeradbiomed.2020.10.307; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85095804730&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/33157209; https://linkinghub.elsevier.com/retrieve/pii/S0891584920315811; https://dx.doi.org/10.1016/j.freeradbiomed.2020.10.307
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know