Superior performance biodiesel from biomass-derived fusel alcohols and low grade oils: Fatty acid fusel esters (FAFE)
Fuel, ISSN: 0016-2361, Vol: 268, Page: 117408
2020
- 19Citations
- 37Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We demonstrated production of a superior performance biodiesel referred to here as fatty acid fusel alcohol esters (FAFE) – by reacting fusel alcohols (isobutanol, 3-methyl-1-butanol, and ( S )-(-)-2-methyl-1-butanol) with oil (glyceryl trioleate) using lipase from Aspergillus oryzae. Reaction conditions corresponding to a molar ratio of 5:1 (fusel alcohols to oil), enzyme loading of 2% w/w, reaction temperature of 35 °C, shaking speed of 250 rpm, and reaction time of 24 h achieved >97% conversion to FAFE. Further, FAFE obtained from reacting a fusel alcohol mixture with corn oil were evaluated for use as a fuel for diesel engines. FAFE mixtures showed superior combustion and cold-flow properties, with the derived cetane numbers up to 4.8 points higher, cloud points up to −6 °C lower, and the heat of combustion up to 2.1% higher than the corresponding FAME samples, depending on the fusel mixture used. This represents a significant improvement for all three metrics, which are typically anti-correlated. FAFE provides a new opportunity for expanded usage of biodiesel by addressing feedstock limitations, fuel performance, and low temperature tolerance.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0016236120304038; http://dx.doi.org/10.1016/j.fuel.2020.117408; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85079866582&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0016236120304038; https://dx.doi.org/10.1016/j.fuel.2020.117408
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know