PlumX Metrics
Embed PlumX Metrics

Construction of NiS/MnCdS S-scheme heterojunction for efficient photocatalytic overall water splitting: Regulation of surface sulfur vacancy and energy band structure

Fuel, ISSN: 0016-2361, Vol: 363, Page: 130964
2024
  • 26
    Citations
  • 0
    Usage
  • 5
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    26
    • Citation Indexes
      26
  • Captures
    5

Article Description

The overall water splitting based on specific photocatalysts is one of the ultimate ways to solve the energy and environmental crisis facing humanity. Sulfide photocatalysts have greater potential in photocatalytic production of solar fuel. However, due to its easy photocorrosion phenomenon, it not effectively driving the water oxidation semi-reaction to produce oxygen, so how to use sulfide photocatalyst to decompose pure water to achieve stoichiometric reaction of H 2 /O 2 production remains a quite challenging task. Herein, sulfur vacancies-rich MnCdS nanoparticles were modified with NiS nanosheets through the hydrothermal derivation method. Different concentration gradients of sulfur-vacancy in MnCdS nanoparticles (MnCdS-Vs-X) with tunable band structures were successful prepared by regulating the concentration of hydrazine hydrate, thus improves the efficiency of light energy utilization and charge separation and the existence of S defects was verified by transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR). The density function theory (DFT) calculation bears out that the draw into of S vacancy adjusted the band structure of MnCdS. Moreover, the successful construction of an S-scheme heterojunction between NiS and MnCdS-Vs-3 has been strongly demonstrated by in-situ XPS and UPS, which promoted interfacial charge separation and further improved the photocatalytic hydrogen evolution efficiency. The as-obtained S-scheme 20 %NiS/MnCdS-Vs-3 heterojunction exhibit excellent visible-light H 2 production activity of 4099.55 μmol g −1 h −1, 6.75 times higher than pure MnCdS. Most importantly, the excellent and stable photocatalytic overall water splitting activity of H 2 -509.70 μmol g -1 h −1 /O 2 -254.90 μmol g -1 h −1 were obtained over 20 % NiS/MnCdS-Vs-3, which further demonstrates the application value of NiS/MnCdS-Vs-3 photocatalysts. This work proposes new ideas for the application of S-vacancies and S-scheme heterojunction in addressing the stability issues associated with sulfide-based photocatalysts in photocatalytic water splitting.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know