Methylation and expression of rice NLR genes after low temperature stress
Gene, ISSN: 0378-1119, Vol: 845, Page: 146830
2022
- 2Citations
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Nucleotide-binding leucine-rich repeat receptors (NLRs) are included in most plant disease resistance proteins. Some NLR proteins have been revealed to be induced by the invasion of plant pathogens. DNA methylation is required for adaption to adversity and proper regulation of gene expression in plants. Low temperature stress (LTS) is a restriction factor in rice growth, development and production. Here, we report the methylation and expression of NLR genes in two rice cultivars, i.e., 9311 (an indica rice cultivar sensitive to LTS), and P427 (a japonica cultivar, tolerant to LTS), after LTS. We found that the rice NLR genes were heavily methylated at CG sites at room temperature and low temperature in 9311 and P427, and many rice NLR genes showed DNA methylation alteration after LTS. A great number of rice NLR genes were observed to be responsive to LTS at the transcriptional level. Our observation suggests that the alteration of expression of rice NLR genes was similar but their change in DNA methylation was dynamic between the two rice cultivars after LTS. We identified that more P427 NLR genes reacted to LTS than those of 9311 at the methylation and transcriptional level. The results in this study will be useful for further understanding the transcriptional regulation and potential functions of rice NLR genes.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0378111922006497; http://dx.doi.org/10.1016/j.gene.2022.146830; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85137298603&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/35995119; https://linkinghub.elsevier.com/retrieve/pii/S0378111922006497; https://dx.doi.org/10.1016/j.gene.2022.146830
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know