Geometric flavours of quantum field theory on a Cauchy hypersurface. Part II: Methods of quantization and evolution
Journal of Geometry and Physics, ISSN: 0393-0440, Vol: 203, Page: 105265
2024
- 1Citations
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this series of papers we aim to provide a mathematically comprehensive framework to the Hamiltonian pictures of quantum field theory in curved spacetimes. Our final goal is to study the kinematics and the dynamics of the theory from the point of differential geometry in infinite dimensions. In this second part we use the tools of Gaussian analysis in infinite dimensional spaces introduced in the first part to describe rigorously the procedures of geometric quantization in the space of Cauchy data of a scalar theory. This leads us to discuss and establish relations between different pictures of QFT. We also apply these tools to describe the geometrization of the space of pure states of quantum field theory as a Kähler manifold. We use this to derive an evolution equation that preserves the geometric structure and avoid norm losses in the evolution. This leads us to a modification of the Schrödinger equation via a quantum connection that we discuss and exemplify in a simple case.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0393044024001669; http://dx.doi.org/10.1016/j.geomphys.2024.105265; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85197604367&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0393044024001669; https://dx.doi.org/10.1016/j.geomphys.2024.105265
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know