Analyses of groundwater level in a data-scarce region based on assessed precipitation products and machine learning
Groundwater for Sustainable Development, ISSN: 2352-801X, Vol: 26, Page: 101299
2024
- 8Citations
- 45Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Groundwater, a vital natural resource globally, faces challenges related to data scarcity, particularly in data-limited regions. To address this issue in the region of Bahira in Morocco, we developed an innovative approach for estimating groundwater levels by utilizing precipitation products and employed a random forest (RF) machine learning (ML) model to fill data gaps. Our study involved a comprehensive assessment of ten precipitation products, comprising six Reanalysis Precipitation Products (RPPs) and four Satellite-based Precipitation Products (SPPs). We evaluated their performance across various time scales, including daily, monthly, and seasonal, across different topographical classes. The outcomes highlighted the consistency of ERA5-based datasets, boasting daily correlation to values higher than 0.6, whereas monthly and seasonal correlations exceed 0.8, except during summer. GPM-IMERG, MERRA2, and CPC-UPP also demonstrated commendable accuracy, particularly in plain and mountainous areas. Nonetheless, CFSR, CHIRPS, PERSIANN CDR, and TRMM datasets exhibited limitations, particularly in high mountain areas. To address data gaps, we initially explored correlations between RPPs, SPPs, and groundwater data. However, these correlations failed to meet the accuracy standards required for precise predictions. Notably, the strongest correlations were observed in monitoring stations located in mountainous regions, indicating significant aquifer recharge activities in these areas. In the subsequent phase, the Multiple Imputation by Chained Equations (MICE) machine learning-based imputation method served as a valuable tool for estimating groundwater levels in regions where ground observations were insufficient. Our trend analysis yielded significant insights, with approximately 95% of groundwater points displaying negative trends, with a maximum rate of −0.91 m. In contrast, 69% of precipitation stations exhibited negative trends, with a maximum rate of −0.06 mm. Our approach offers a promising potential to address the challenges associated with the scarcity of groundwater and precipitation data, making it a valuable tool for the assessment, monitoring, and management of groundwater resources.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2352801X24002224; http://dx.doi.org/10.1016/j.gsd.2024.101299; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85199877497&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2352801X24002224; https://dx.doi.org/10.1016/j.gsd.2024.101299
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know