PlumX Metrics
Embed PlumX Metrics

Evaluation of the stability of lyophilized loop-mediated isothermal amplification reagents for the detection of Coxiella burnetii

Heliyon, ISSN: 2405-8440, Vol: 3, Issue: 10, Page: e00415
2017
  • 25
    Citations
  • 0
    Usage
  • 84
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Coxiella burnetii, the causative pathogen for Q fever, is an obligate intracellular bacterium and designated as a biosafety level 3 agent. Detection and quantification of the bacteria with conventional culturing methods is time-consuming and poses significant health risks. Polymerase chain reaction (PCR)-based assays have been developed for detecting C. burnetii and could provide rapid diagnosis. However, they require specialized equipment, including a cold chain for PCR reagents that maintains their stability during storage and transport. These requirements limit the advantage of PCR-based methods, especially in resource-limited areas. Previously, we had developed a lyophilized loop-mediated isothermal amplification (LAMP) assay to detect the presence of C. burnetii. To simplify and improve this assay, the reagents for the LAMP assay and the detecting reagent, SYBR green, were lyophilized together. The stability of the lyophilized reagents was evaluated by measuring changes in detection limit for plasmid DNA encoding a C. burnetii gene upon storage at 4 °C, 25 °C, or 37 °C. Our data indicate that the lyophilized reagents remain stable for 24 months when stored at 4 °C, 28 days at 25 °C, and 2 days at 37 °C. This improved LAMP assay can be easily performed in a simple water bath or heating block. The stability at ambient temperature, the simplicity of assay procedure, and the availability of low cost equipment make this method ideal for use in resource-limited settings where Q fever is endemic.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know