Enhanced catalytic activity of Bacillus aryabhattai P1 protease by modulation with nanoactivator
Heliyon, ISSN: 2405-8440, Vol: 6, Issue: 6, Page: e04053
2020
- 10Citations
- 53Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations10
- Citation Indexes10
- 10
- CrossRef2
- Captures53
- Readers53
- 53
Article Description
In the developing area of modern nanobiotechnology, the research is being focused on enhancement of catalytic performance in terms of efficiency and stability of enzymes to fulfill the industrial demand. In the context of this interdisciplinary era, we isolated and identified alkaline protease producer Bacillus aryabhattai P1 by polyphasic approach and then followed one variable at a time approach to optimize protease production from P1. The modified components of fermentation medium (g/L) were wheat bran 10, soybean flour 10, yeast extract 5, NaCl 10, KH 2 PO 4 1, K 2 HPO 4 1 and MgSO 4 ·7H 2 O 0.2 (pH 9). The optimum alkaline protease production from P1 was recorded 75 ± 3 U/mg at 35 °C and pH 9 after 96 h of fermentation period. Molecular weight of partially purified P1 alkaline protease was 26 KDa as revealed by SDS-PAGE. Calcium based nanoceramic material was prepared by wet chemical precipitation method and doped in native P1 protease for catalytic activity enhancement. Catalytic activity of modified P1 protease was attained by nanoactivator mediated modulation was more by 5.58 fold at pH 10 and 30 °C temperature. The nanoceramic material named as nanoactivator, with grain size of 40–60 nm was suitable to redesign the active site of P1 protease. Such types of modified proteases can be used in different nanobiotechnological applications.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2405844020308975; http://dx.doi.org/10.1016/j.heliyon.2020.e04053; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85085743809&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/32529068; https://linkinghub.elsevier.com/retrieve/pii/S2405844020308975; https://dx.doi.org/10.1016/j.heliyon.2020.e04053
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know