Power-laws in dog behavior may pave the way to predictive models: A pattern analysis study
Heliyon, ISSN: 2405-8440, Vol: 7, Issue: 6, Page: e07243
2021
- 1Citations
- 17Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
- CrossRef1
- Captures17
- Readers17
- 17
Article Description
Apparently random events in nature often reveal hidden patterns when analyzed using diverse and robust statistical tools. Power law distributions, for example, project diverse natural phenomenon, ranging from earthquakes to heartbeat dynamics into a common platform of self-similarity. Animal behavior in specific contexts has been shown to follow power law distributions. However, the behavioral repertoire of a species in its entirety has never been analyzed for the existence of such underlying patterns. Here we show that the frequency-rank data of randomly sighted behaviors at the population level of free-ranging dogs follow a scale-invariant power law behavior. It suggests that irrespective of changes in location of sightings, seasonal variations and observer bias, datasets exhibit a conserved trend of scale invariance. The data also exhibits robust self-similarity patterns at different scales which we extract using multifractal detrended fluctuation analysis. We observe that the probability of consecutive occurrence of behaviors of adjacent ranks is much higher than behaviors widely separated in rank. The findings open up the possibility of designing predictive models of behavior from correlations existing in true time series of behavioral data and exploring the general behavioral repertoire of a species for the presence of syntax.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2405844021013463; http://dx.doi.org/10.1016/j.heliyon.2021.e07243; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85108361198&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/34195401; https://linkinghub.elsevier.com/retrieve/pii/S2405844021013463; https://dx.doi.org/10.1016/j.heliyon.2021.e07243
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know