Non-isothermal crystallization kinetics of graphene/PA10T composites
Heliyon, ISSN: 2405-8440, Vol: 8, Issue: 8, Page: e10206
2022
- 15Citations
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations15
- Citation Indexes15
- 15
- CrossRef12
- Captures1
- Readers1
Article Description
Crystallization kinetics is the key factor in controlling the polymer crystallization process and affecting crystallinity and crystalline morphology, which determine the polymer's main properties. In this work, the non-isothermal crystallization kinetics of graphene/PA10T composites are investigated by the Jeziorny method and Mo method, and the crystallization activation energy is calculated by the Kissinger method. It is found that the addition of an appropriate amount of graphene to PA10T can significantly promote the crystallization of PA10T and accelerate its crystallization rate. The Jeziorny equation does not have a linear relationship across the whole crystallization range, while the Mo equation does a good linear fitting. In addition, the crystallization activation energy decreases when the graphene content is below 1 wt.%. TGA results indicate that the addition of graphene improves the thermal stability of PA10T.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2405844022014943; http://dx.doi.org/10.1016/j.heliyon.2022.e10206; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85136230987&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/36033336; https://linkinghub.elsevier.com/retrieve/pii/S2405844022014943; https://dx.doi.org/10.1016/j.heliyon.2022.e10206
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know