Efficient production of lactic acid from cellulose and xylan in sugarcane bagasse by newly isolated Lactiplantibacillus plantarum and Levilactobacillus brevis through simultaneous saccharification and co-fermentation process
Heliyon, ISSN: 2405-8440, Vol: 9, Issue: 7, Page: e17935
2023
- 13Citations
- 45Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations13
- Citation Indexes13
- CrossRef13
- 11
- Captures45
- Readers45
- 45
- Mentions1
- News Mentions1
- News1
Most Recent News
Reports Summarize Science and Technology Study Results from Khon Kaen University (Efficient production of lactic acid from cellulose and xylan in sugarcane bagasse by newly isolated Lactiplantibacillus plantarum and Levilactobacillus brevis ...)
2023 JUL 25 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Science Daily -- Data detailed on science and technology have been presented.
Article Description
Sugarcane bagasse is one of the promising lignocellulosic feedstocks for bio-based chemicals production. However, to date, most research focuses mainly on the cellulose conversion process, while hemicellulose remains largely underutilized. The conversion of glucose and xylose derived from lignocellulosic biomass can be a promising strategy to improve utilization efficiencies of resources, energy, and water, and at the same time reduce wastes generated from the process. Here, attempts were made to convert cellulose and xylan in sugarcane bagasse (SB) into lactic acid (LA) through a pre-hydrolysis and simultaneous saccharification and co-fermentation (SScF) process using newly isolated Lactiplantibacillus plantarum TSKKU P-8 and Levilactobacillus brevis CHKKU N-6. The process yielded 91.9 g/L of LA, with a volumetric productivity of 0.85 g/(L·h). This was equivalent to 137.8 ± 3.4 g-LA, a yield on substrate (pretreated SB) of 0.86 g/g, and a productivity of 1.28 g/h, based on a final volume of 1.5 L. On the other hand, pre-hydrolysis and simultaneous saccharification and fermentation (SSF) process using La. plantarum TSKKU P-8 as a monoculture gave 86.7 ± 0.2 g/L of LA and a volumetric productivity of 0.8 g/(L·h), which were equivalent to 104.8 ± 0.3 g-LA, a yield on substrate of 0.65 g/g, and a productivity of 0.97 g/h, based on a final volume of 1.2 L. Mass balance calculated based on mass of raw SB entering the process showed that the SScF process improved the product yield by 32% as compared with SSF process, resulting in 14% improvement in medium-based economic yield.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2405844023051435; http://dx.doi.org/10.1016/j.heliyon.2023.e17935; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85164376984&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/37449189; https://linkinghub.elsevier.com/retrieve/pii/S2405844023051435; https://dx.doi.org/10.1016/j.heliyon.2023.e17935
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know