Application of electro-spraying technique and mathematical modelling for nanoencapsulation of curcumin
Heliyon, ISSN: 2405-8440, Vol: 10, Issue: 4, Page: e25680
2024
- 11Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures11
- Readers11
- 11
Article Description
Electro-spraying Process (ESP) was used to coat extracted curcumin (CUR) with milk protein isolate (MPI) at equal concentration. The variables were applied voltage (AV), pumps flow rate ratio (PFRR) for coating (CUR with MPI), travelling distance (TD for coating and dehydration), ESE and MPI concentrations. They changed respectively from 7.5 to 27.5 kV, 2–10 times, and 5–25 cm, and 1.5–3.5% (w/w). When the MPI concentration, TD, PFRR, and AV of ESE reached respectively to 2.56 %, 16.64 cm, 6.77 times, and 19.06 kV; the resulting nanoparticle diameter and encapsulation efficiency of CUR coated (with MPI) became 232 nm (minimum) and 80.7% (maximum) values. The scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) analysis confirmed that the produced nanoparticles were bead-free, homogeneous, smooth surfaces, and >50% uniformity. While the nanoparticles of CUR had >70% heat resistance (up to 10 min at 120 °C against degradation), it had more than 100% antioxidant capacity in aqueous solution than its free form (because of its appropriate and intact coating). In-vitro studies showed that the nano encapsulated particles released >80% of CUR into the intestinal tract without significant release in simulated gastric fluid.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2405844024017110; http://dx.doi.org/10.1016/j.heliyon.2024.e25680; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85185503943&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38390193; https://linkinghub.elsevier.com/retrieve/pii/S2405844024017110; https://dx.doi.org/10.1016/j.heliyon.2024.e25680
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know