Biomechanical analysis of titanium-alloy and biodegradable implants in dual plate osteosynthesis for AO/ASIF type 33-C2 fractures
Heliyon, ISSN: 2405-8440, Vol: 10, Issue: 4, Page: e26213
2024
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures5
- Readers5
Article Description
Treating geriatric osteoporotic distal femur fractures has always presented challenges, but developing biodegradable materials has brought new opportunities for therapeutic intervention. Despite this progress, there currently needs to be more evidence-based biomechanical guidelines for using dual plate fixation and biodegradable materials in treating osteoporotic comminuted distal femoral fractures. In this study, finite element analysis was conducted to evaluate the mechanical effectiveness of different implant materials (titanium alloys, biodegradable materials, and combinations of both) in the fixation of physiological and osteoporotic distal femoral fractures. We constructed finite element models of 33-C2 fractures and three types of plates: the Lateral Less Invasive Stabilization System (LISS) plate, the titanium-alloy medial plate (TAP), and the biodegradable plate (BP). To evaluate the biomechanical advantages in both physiological femur (PF) and osteoporotic femur (OF) conditions, three scenarios were developed: LISS + TAP, LISS + BP, and double biodegradable plates (DBPs). Five loading conditions were applied to measure structural stiffness, fracture micromotion, and implant stress: medio-lateral four-point bending, antero-posterior four-point bending, axial loading, torsional loading, and sideways falling. Several parameters were examined, including peak Von Mises Stress (VMS) of the femur and lateral plate, maximum displacement, bending angle, torsional angle of fracture, and risk of fracture. In four-point bending tests, the lateral plate of the DBPs group exhibited a slightly lower peak VMS compared to the LISS + TAP and LISS + BP groups. When subjected to axial loading, the stiffness values of the LISS + TAP (OF) were 1.42 times and 1.86 times higher than LISS + BP (OF) and DBPs (OF) groups, and the peak VMS of lateral plate of DBPs (OF) construct was approximately 2% and 16% lower than that of the LISS + TAP (OF) and LISS + BP (OF) constructs. Under torsional loading, DBPs (OF) demonstrated rotational stiffness that was respectively 2% and 52% greater than that of LISS + TAP (OF) and LISS + BP (OF). Regarding the peak VMS of femur, the values of DBPs (OF) were almost 8% and 15% lower than those of LISS + TAP (OF) and LISS + BP (OF). The use of DBPs at 11.33 GPa facilitated early mobilization of load-bearing joints but exhibited limited ability to support full weight-bearing activities. Though LISS + TAP met practical strength requirements, one should consider the potential biological irritation and stress shielding. Thus, employing a combination of biodegradable and metal internal fixation is a valid approach to effectively treat weight-bearing joint fractures in clinical practice.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2405844024022448; http://dx.doi.org/10.1016/j.heliyon.2024.e26213; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85185373285&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38404819; https://linkinghub.elsevier.com/retrieve/pii/S2405844024022448; https://dx.doi.org/10.1016/j.heliyon.2024.e26213
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know