A nomogram to predict cryptococcal meningitis in patients with pulmonary cryptococcosis
Heliyon, ISSN: 2405-8440, Vol: 10, Issue: 9, Page: e30281
2024
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
The most serious manifestation of pulmonary cryptococcosis is complicated with cryptococcal meningitis, while its clinical manifestations lack specificity with delayed diagnosis and high mortality. The early prediction of this complication can assist doctors to carry out clinical interventions in time, thus improving the cure rate. This study aimed to construct a nomogram to predict the risk of cryptococcal meningitis in patients with pulmonary cryptococcosis through a scoring system. The clinical data of 525 patients with pulmonary cryptococcosis were retrospectively analyzed, including 317 cases (60.38 %) with cryptococcal meningitis and 208 cases (39.62 %) without cryptococcal meningitis. The risk factors of cryptococcal meningitis were screened by univariate analysis, LASSO regression analysis and multivariate logistic regression analysis. Then the risk factors were incorporated into the nomogram scoring system to establish a prediction model. The model was validated by receiver operating characteristic (ROC) curve, decision curve analysis (DCA) and clinical impact curve. Fourteen risk factors for cryptococcal meningitis in patients with pulmonary cryptococcosis were screened out by statistical method, including 6 clinical manifestations (fever, headache, nausea, psychiatric symptoms, tuberculosis, hematologic malignancy) and 8 clinical indicators (neutrophils, lymphocytes, glutamic oxaloacetic transaminase, T cells, helper T cells, killer T cells, NK cells and B cells). The AUC value was 0.978 (CI 96.2 %∼98.9 %), indicating the nomogram was well verified. The nomogram scoring system constructed in this study can accurately predict the risk of cryptococcal meningitis in patients with pulmonary cryptococcosis, which may provide a reference for clinical diagnosis and treatment of patients with cryptococcal meningitis.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2405844024063126; http://dx.doi.org/10.1016/j.heliyon.2024.e30281; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85192073084&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38726150; https://linkinghub.elsevier.com/retrieve/pii/S2405844024063126; https://dx.doi.org/10.1016/j.heliyon.2024.e30281
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know