Systematic optimization of culture media for maintenance of human induced pluripotent stem cells using the response surface methodology
Heliyon, ISSN: 2405-8440, Vol: 10, Issue: 12, Page: e32558
2024
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures6
- Readers6
Article Description
The application of human induced pluripotent stem cells (hiPSCs) provides tremendous opportunities in cell therapy. However, culturing these cells faces many practical challenges, including costs associated with cell culture media and the optimization of cell culture conditions. Providing an optimized culture platform for hiPSCs to maintain pluripotency and self-renewal and generate cost-effective and robust therapeutics is an immediate requirement. This study used the design of experiments and the response surface methodology, a powerful statistical tool, to generate empirical models for predicting the optimal culture conditions of the hiPSCs. Pluripotency and cell proliferation were applied as read-outs to determine the optimal concentration of basic fibroblast growth factor (bFGF) and cell density. One model was defined to predict pluripotency and cell proliferation in terms of the predictor variables of the bFGF concentration and cell seeding density. Predicted culture conditions to maximize maintaining cell pluripotency were successfully validated. The present study's findings provide a novel approach that can potentially allow controllable hiPSC culture routine in translational research.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S240584402408589X; http://dx.doi.org/10.1016/j.heliyon.2024.e32558; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85195630406&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38975108; https://linkinghub.elsevier.com/retrieve/pii/S240584402408589X
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know