The quasi-universality of chondrule size as a constraint for chondrule formation models
Icarus, ISSN: 0019-1035, Vol: 232, Page: 176-186
2014
- 31Citations
- 37Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Primitive meteorites are dominated by millimeter-size silicate spherules called chondrules. The nature of the high-temperature events that produced them in the early Solar System remains enigmatic. Beside their thermal history, one important clue is provided by their size which shows remarkably little variation (less than a factor of 6 for the mean chondrule radius of most chondrites) despite the extensive range of ages and heliocentric distances sampled. It is however unclear whether chondrule size is due to the chondrule melting process itself, or has been simply inherited from the precursor material, or yet results from some sorting process. I examine these different possibilities in terms of their analytical size predictions. Unless the chondrule-forming “window” was very narrow, radial sorting can be excluded as a size-determining process because of the large variations it would predict. Molten planetesimal collision or impact melting models, which derive chondrules from the fragmentation of larger melt bodies, would likewise predict too much size variability by themselves; more generally any size modification during chondrule formation is limited in extent by evidence from compound chondrules and the considerable compositional variability of chondrules. Turbulent concentration would predict a low size variability but lack of evidence of any accretion bias in carbonaceous chondrites may be difficult to reconcile with any form of local sorting upon agglomeration. Growth by sticking (especially if bouncing-limited) of aggregates as chondrule precursors would yield limited variations of their final radius in space and time, and would be consistent with the relatively similar size of other chondrite components such as refractory inclusions. This suggests that the chondrule-melting process(es) simply melted such nebular aggregates with little modification of mass.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0019103514000347; http://dx.doi.org/10.1016/j.icarus.2014.01.012; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84893783814&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0019103514000347; https://dx.doi.org/10.1016/j.icarus.2014.01.012
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know