Water ice and dust in the innermost coma of comet 103P/Hartley 2
Icarus, ISSN: 0019-1035, Vol: 238, Page: 191-204
2014
- 88Citations
- 30Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
On November 4th, 2010, the Deep Impact eXtended Investigation (DIXI) successfully encountered comet 103P/Hartley 2, when it was at a heliocentric distance of 1.06 AU. Spatially resolved near-IR spectra of comet Hartley 2 were acquired in the 1.05–4.83 μm wavelength range using the HRI-IR spectrometer. We present spectral maps of the inner ∼ 10 km of the coma collected 7 min and 23 min after closest approach. The extracted reflectance spectra include well-defined absorption bands near 1.5, 2.0, and 3.0 μm consistent in position, bandwidth, and shape with the presence of water ice grains. Using Hapke’s radiative transfer model, we characterize the type of mixing (areal vs. intimate), relative abundance, grain size, and spatial distribution of water ice and refractories. Our modeling suggests that the dust, which dominates the innermost coma of Hartley 2 and is at a temperature of 300 K, is thermally and physically decoupled from the fine-grained water ice particles, which are on the order of 1 μm in size. The strong correlation between the water ice, dust, and CO 2 spatial distribution supports the concept that CO 2 gas drags the water ice and dust grains from the nucleus. Once in the coma, the water ice begins subliming while the dust is in a constant outflow. The derived water ice scale-length is compatible with the lifetimes expected for 1-μm pure water ice grains at 1 AU, if velocities are near 0.5 m/s. Such velocities, about three order of magnitudes lower than the expansion velocities expected for isolated 1-μm water ice particles ( Hanner, 1981; Whipple, 1951 ), suggest that the observed water ice grains are likely aggregates.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0019103514002000; http://dx.doi.org/10.1016/j.icarus.2014.04.008; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84902343346&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0019103514002000; https://dx.doi.org/10.1016/j.icarus.2014.04.008
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know