Water vapor adsorption on Mars
Icarus, ISSN: 0019-1035, Vol: 357, Page: 114270
2021
- 14Citations
- 17Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Near-surface air moisture observations from Phoenix and Curiosity display diurnal adsorption, which appears insensitive to mineralogy of regolith. To study this, adsorptive column model simulations are made for midsummer at Phoenix, validated against recalibrated TECP water vapor pressures p. Two standard-form (= obeying the van't Hoff equilibrium law) adsorption isotherms with quite different specific surface areas A s do produce nearly identical and good matches with the observed p, whereas a widely used non-standard isotherm fails. When made standard, it also produces good results. Adsorbed amounts differ in the three good simulations but their surface fluxes and surface vapor concentrations are nevertheless nearly identical. Properties of regolith except enthalpy are shown to disappear in the model's adsorption term, explaining insensitivity to A s. The van't Hoff plot of observed ln p vs. model's 1/T g during adsorption and desorption suggests enthalpy of about 22 kJ/mol. Enthalpies of the three standard-form isotherms are close to this, explaining their excellent match with each other and with observations. Hence the low-pressure water vapor adsorption to martian regolith appears essentially nonspecific and is associated with low enthalpy, as is typical for physisorption in general.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S001910352030590X; http://dx.doi.org/10.1016/j.icarus.2020.114270; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85097732052&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S001910352030590X; https://dx.doi.org/10.1016/j.icarus.2020.114270
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know