Another one derives the dust: Ultraviolet dust aerosol properties retrieved from MAVEN/IUVS data
Icarus, ISSN: 0019-1035, Vol: 387, Page: 115177
2022
- 10Citations
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We derived the ultraviolet complex refractive indices of Martian dust aerosols using data from the Mars year 34 global dust storm (GDS). We used data taken by the Imaging Ultraviolet Spectrograph (IUVS) instrument aboard the Mars Atmosphere and Volatile Evolution spacecraft and surface-based derivations of the column-integrated optical depth from the Mastcam instrument on Curiosity. We first created an explicit microphysical representation of dust to compute dust-scattering properties at wavelengths within IUVS’ spectral range for four dust particle-size distributions plausibly present during this GDS. We then used radiative-transfer techniques to iteratively retrieve the single-scattering albedo from IUVS data using the Mastcam-derived column-integrated optical depth as a constraint. We converted the dust single-scattering albedo into its refractive indices and report the refractive indices at the four particle-size distributions. We performed dust optical depth retrievals at another time period using several of these refractive indices and show that our preferred refractive indices produce optical depths which are consistent with optical depths derived from Mastcam data at similar times. These ultraviolet refractive indices will be particularly beneficial for future observational and theoretical studies of Martian dust.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0019103522002780; http://dx.doi.org/10.1016/j.icarus.2022.115177; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85135396305&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0019103522002780; https://dx.doi.org/10.1016/j.icarus.2022.115177
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know