Reflectance of silicate glasses in the mid-infrared region (MIR): Implications for planetary research
Icarus, ISSN: 0019-1035, Vol: 388, Page: 115222
2022
- 9Citations
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Volcanic phenomaena shaped the surface of all terrestrial planets in the solar system, and silicate glasses represent a major component in pyroclastic deposits and lavas. Spectral features of silicate glasses therefore influence spectral characteristics of large portions of planetary surfaces. In this study, experimental petrology techniques have been used to produce 19 silicate glass samples having natural chemical composition corresponding to four of the most common magmatic series on planet Earth. Reflectance of such products was investigated in the mid-infrared region (MIR) to observe the evolution of their spectral characteristics with changing degree of evolution (expressed as silica content) and alkaline content. We have observed how chemical features have a clear influence in shifting the spectral features (to lower wavelengths with increasing silica, such as for previously studied volcanic rocks) and on the spectral shape, which is substantially different between mafic and highly silicic products. This allowed us to propose a model to retrieve chemical information (SiO 2 and SiO 2 + Al 2 O 3 + TiO 2 content) from the wavelength at which spectral features (CF and RB peak ) occur. Moreover, by comparing our results with previous MIR studies we have observed that our model can be applied, to a certain extent, to interpret chemical fingerpint volcanic rocks in general. Here, it is also shown how granulometry influences spectral shape, but does not affect spectral shift. This study will be useful to interpret planetary information and assess how amorphous silicate phases influence spectral characteristics of volcanic areas on planetary surfaces.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0019103522003189; http://dx.doi.org/10.1016/j.icarus.2022.115222; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85138767084&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0019103522003189; https://dx.doi.org/10.1016/j.icarus.2022.115222
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know