Uranus and Neptune as methane planets: Producing icy giants from refractory planetesimals
Icarus, ISSN: 0019-1035, Vol: 421, Page: 116217
2024
- 1Citations
- 13Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Uranus and Neptune are commonly considered ice giants, and it is often assumed that, in addition to a solar mix of hydrogen and helium, they contain roughly twice as much water as rock. This classical picture has led to successful models of their internal structure and has been understood to be compatible with the composition of the solar nebula during their formation (Reynolds and Summers, 1965; Podolak and Cameron, 1974; Podolak and Reynolds, 1984; Podolak et al., 1995). However, the dominance of water has been recently questioned (Teanby et al., 2020; Helled and Fortney, 2020; Podolak et al., 2022). Planetesimals in the outer solar system are composed mainly of refractory materials, leading to an inconsistency between the icy composition of Uranus and Neptune and the ice-poor planetesimals they accreted during formation (Podolak et al., 2022). Here we elaborate on this problem, and propose a new potential solution. We show that chemical reactions between planetesimals dominated by organic-rich refractory materials and the hydrogen in gaseous atmospheres of protoplanets can form large amounts of methane ‘ice’. Uranus and Neptune could thus be compatible with having accreted refractory-dominated planetesimals, while still remaining icy. Using random statistical computer models for a wide parameter space, we show that the resulting methane-rich internal composition could be a natural solution, giving a good match to the size, mass and moment of inertia of Uranus and Neptune, whereas rock-rich models appear to only work if a rocky interior is heavily mixed with hydrogen. Our model predicts a lower than solar hydrogen to helium ratio, which can be tested. We conclude that Uranus, Neptune and similar exoplanets could be methane-rich, and discuss why Jupiter and Saturn cannot.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S001910352400277X; http://dx.doi.org/10.1016/j.icarus.2024.116217; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85199157176&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S001910352400277X; https://dx.doi.org/10.1016/j.icarus.2024.116217
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know