Quantified neural Markov logic networks
International Journal of Approximate Reasoning, ISSN: 0888-613X, Vol: 171, Page: 109172
2024
- 2Citations
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Markov Logic Networks (MLNs) are discrete generative models in the exponential family. However, specifying these rules requires considerable expertise and can pose a significant challenge. To overcome this limitation, Neural MLNs (NMLNs) have been introduced, enabling the specification of potential functions as neural networks. Thanks to the compact representation of their neural potential functions, NMLNs have shown impressive performance in modeling complex domains like molecular data. Despite the superior performance of NMLNs, their theoretical expressiveness is still equivalent to that of MLNs without quantifiers. In this paper, we propose a new class of NMLN, called Quantified NMLN, that extends the expressivity of NMLNs to the quantified setting. Furthermore, we demonstrate how to leverage the neural nature of NMLNs to employ learnable aggregation functions as quantifiers, increasing expressivity even further. We demonstrate the competitiveness of Quantified NMLNs over original NMLNs and state-of-the-art diffusion models in molecule generation experiments.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0888613X24000598; http://dx.doi.org/10.1016/j.ijar.2024.109172; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85189687593&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0888613X24000598; https://dx.doi.org/10.1016/j.ijar.2024.109172
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know