PlumX Metrics
Embed PlumX Metrics

Quantified neural Markov logic networks

International Journal of Approximate Reasoning, ISSN: 0888-613X, Vol: 171, Page: 109172
2024
  • 2
    Citations
  • 0
    Usage
  • 1
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Markov Logic Networks (MLNs) are discrete generative models in the exponential family. However, specifying these rules requires considerable expertise and can pose a significant challenge. To overcome this limitation, Neural MLNs (NMLNs) have been introduced, enabling the specification of potential functions as neural networks. Thanks to the compact representation of their neural potential functions, NMLNs have shown impressive performance in modeling complex domains like molecular data. Despite the superior performance of NMLNs, their theoretical expressiveness is still equivalent to that of MLNs without quantifiers. In this paper, we propose a new class of NMLN, called Quantified NMLN, that extends the expressivity of NMLNs to the quantified setting. Furthermore, we demonstrate how to leverage the neural nature of NMLNs to employ learnable aggregation functions as quantifiers, increasing expressivity even further. We demonstrate the competitiveness of Quantified NMLNs over original NMLNs and state-of-the-art diffusion models in molecule generation experiments.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know