Fabricating lignin-based carbon nanofibers as versatile supercapacitors from food wastes
International Journal of Biological Macromolecules, ISSN: 0141-8130, Vol: 194, Page: 632-643
2022
- 39Citations
- 39Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations39
- Citation Indexes39
- 39
- CrossRef27
- Captures39
- Readers39
- 39
Article Description
Recently, the high-value utilization of food wastes has attracted great interest in sustainable development. Focusing on the major application of electrochemical energy storage (ECES), light-weight lignin-based carbon nanofibers (LCNFs) were controllably fabricated as supercapacitors from melon seed shells (MSS) and peanut shells (PS) through electrospinning and carbonizing processes. As a result, the optimal specific capacitance of 533.7 F/g in three-electrode system, energy density of 69.7 Wh/kg and power density of 780 W/Kg in two-electrode system were achieved. Surprisingly, the LCNFs also presented a satisfied electromagnetic absorption property: The minimum reflection loss (RL) value reached −37.2 dB at an absorbing frequency of 7.98 GHz with an effective frequency (RL < 10 dB) of 2.24 GHz (6.88 to 9.12 GHz) at a thickness of 3.0 mm. These features make the multifunctional LCNFs highly attractive for light-weight supercapacitor electrodes and electromagnetic wave absorbers applications.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0141813021025113; http://dx.doi.org/10.1016/j.ijbiomac.2021.11.107; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85120051786&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/34822819; https://linkinghub.elsevier.com/retrieve/pii/S0141813021025113; https://dx.doi.org/10.1016/j.ijbiomac.2021.11.107
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know