PlumX Metrics
Embed PlumX Metrics

Atomic force microscopy investigation of DNA denaturation on a highly oriented pyrolytic graphite surface

International Journal of Biological Macromolecules, ISSN: 0141-8130, Vol: 267, Issue: Pt 2, Page: 131630
2024
  • 0
    Citations
  • 0
    Usage
  • 2
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Understanding of DNA interaction with carbonaceous surfaces (including graphite, graphene and carbon nanotubes) is important for the development of DNA-based biosensors and other biotechnological devices. Though many issues related to DNA adsorption on graphitic surfaces have been studied, some important aspects of DNA interaction with graphite remain unclear. In this work, we use atomic force microscopy (AFM) equipped with super-sharp cantilevers to analyze the morphology and conformation of relatively long DNA molecule adsorbed on a highly oriented pyrolytic graphite (HOPG) surface. We have revealed the effect of DNA embedding into an organic monolayer of N,N′-(decane-1,10-diyl)-bis(tetraglycinamide) (GM), which may “freeze” DNA conformation on a HOPG surface during drying. The dependence of the mean squared point-to-point distance on the contour length suggests that DNA adsorbs on a bare HOPG by a “kinetic trapping” mechanism. For the first time, we have estimated the unfolded fraction of DNA upon contact with a HOPG surface (24 ± 5 %). The obtained results represent a novel experimental model for investigation of the conformation and morphology of DNA adsorbed on graphitic surfaces and provide with a new insight into DNA interaction with graphite.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know