Insights into the relationship between the acetylation of Dendrobium officinale polysaccharides and the ability to promote sIgA secretion
International Journal of Biological Macromolecules, ISSN: 0141-8130, Vol: 304, Issue: Pt 1, Page: 140764
2025
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The acetyl group is a significant reactive component of Dendrobium officinale polysaccharide (DOP). In this study, we prepared DOPs with different degrees of acetyl substitution and investigated how the acetyl group, a naturally occurring characteristic of DOP, influences the immunomodulatory activity and the production of secretory IgA (sIgA) in the small intestine. Physical property measurements revealed significant changes in surface morphology and solubility of DOP caused by the addition or removal of acetyl groups. In vivo studies have demonstrated that DOP can mitigate Cyclophosphamide-induced immunosuppression by enhancing the immune organ index, promoting immunoglobulin secretion, and increasing the population of immune cells. Additionally, DOP can enhance sIgA production through multiple pathways, including enhanced IgA + B cell class switch recombination, gut homing of IgA + plasma cells, and upregulation of factors involved in sIgA composition and secretion. Correlation analysis revealed strong, piecewise-specific correlations between DOP acetylation and sIgA production at varying intervals of acetyl substitution. Based on this, we propose a theoretical framework in which the acetylation of DOP and the secretion of small intestinal sIgA demonstrate a “piecewise correlation”. This framework illustrates the influence of DOP acetylation on immunomodulatory activity and provides a theoretical basis for enhancing the added value of Dendrobium officinale resources.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0141813025013133; http://dx.doi.org/10.1016/j.ijbiomac.2025.140764; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85217080307&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/39924036; https://linkinghub.elsevier.com/retrieve/pii/S0141813025013133
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know