Multi-view locally weighted regression for loss given default forecasting
International Journal of Forecasting, ISSN: 0169-2070, Vol: 41, Issue: 1, Page: 290-306
2025
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures4
- Readers4
Article Description
Accurately forecasting loss given default (LGD) poses challenges, due to its highly skewed distributions and complex nonlinear dependencies with predictors. To this end, we propose a multi-view locally weighted regression (MVLWR) method for LGD forecasting. To address the complexity of LGD distributions, we build a specific ensemble LGD forecasting model tailored for each new sample, providing flexibility and relaxing reliance on distribution assumptions. To address complex relationships, we combine multi-view learning and ensemble learning for LGD modeling. Specifically, we divide original features into multiple complementary groups, build a view-specific locally weighted model for each group, and aggregate the outputs from all view-specific models. An empirical evaluation using a real-world dataset shows that the proposed method outperforms all the benchmarked methods in terms of both out-of-sample and out-of-time performance in LGD forecasting. We also provide valuable insights and practical implications for stakeholders, particularly financial institutions, to enhance their LGD forecasting capabilities.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0169207024000451; http://dx.doi.org/10.1016/j.ijforecast.2024.05.006; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85195285097&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0169207024000451; https://dx.doi.org/10.1016/j.ijforecast.2024.05.006
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know