Numerical study of the porous cavity with different square size vanes with a high focus on Nusselt number
International Journal of Thermofluids, ISSN: 2666-2027, Vol: 24, Page: 100860
2024
- 6Citations
- 2Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Babol Noshirvani University of Technology Researchers Have Provided New Data on Thermofluids (Numerical study of the porous cavity with different square size vanes with a high focus on Nusselt number)
2024 NOV 13 (NewsRx) -- By a News Reporter-Staff News Editor at Tech Daily News -- Fresh data on thermofluids are presented in a new
Article Description
This study extensively analyzes various regular and irregular vanes in pipe porous cavities on natural convection, thermal entropy generation, stream function, and temperature distribution in fluid and solid phases. The finite element method (FEM) is employed to study stream function, temperature distribution in the fluid phase and solid phase, and various γ for Nu f, ave and Nu s, ave in SR, TR, SIR, and TIR. In the present study, a significant contribution of this research is the investigation into the effects of regular versus irregular vanes in the context of enclosures formed by pipe porous cavities that the SIR specimen has the most influence on stream function and thermal effect in the fluid phase and solid phase that aims to enhance system performance and optimize energy efficiency. In addition, the significant influence of geometrical parameters constitutes many heated obstacles in the middle of SIR, various heated vanes in the left of SIR, and employed Ra and ε in the analysis of Nu f, ave and Nu s, ave in SIR are carried out to investigate the percentage discrepancies obtained, notably 89.35 % and 89.72 %, respectively. In validation, the calculation in results was adapted accurately to the finite element method's stream function, the temperature distribution in the fluid phase and solid phase, and various γ for Nu f, ave and Nu s, ave which means that the percentage differences in obtaining results reached under 1 %. Numerical results revealed that the Hartman number has a significant influence in S htf, ave, S hts, ave, Ty ave, Nu f, ave and Nu s, ave in TR, SR, TIR, and SIR.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know