Asymptotic accelerated boundary layer over the permeable wall
International Journal of Heat and Mass Transfer, ISSN: 0017-9310, Vol: 92, Page: 1018-1025
2016
- 8Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The paper reports on numerical and analytical investigation of the laminar boundary layer with a favorable pressure gradient over a permeable wall. Researchers have obtained an analytical solution of boundary layer equations for asymptotic flow conditions. This solution allows proposing a relative asymptotic skin-friction function, which determines a degree of influence of flow acceleration and permeable wall on the flow. There are ranges of this function, where effects of permeable wall and streamwise pressure gradient have to be considered only in combination. Numerical simulation has showed that such combined influence of favorable pressure gradient and permeable wall extends the asymptotic flow. The study of a strong gas blowing into the accelerated flow has revealed that favorable pressure gradient impedes separation of the boundary layer. At that asymptotic flow starts from the point, where the separation would occur at gas injection into the zero-pressure gradient flow.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0017931015301599; http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.09.070; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84943536903&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0017931015301599; https://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.09.070
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know