PlumX Metrics
Embed PlumX Metrics

Thermal transport in two-dimensional C 3 N/C 2 N superlattices: A molecular dynamics approach

International Journal of Heat and Mass Transfer, ISSN: 0017-9310, Vol: 177, Page: 121561
2021
  • 18
    Citations
  • 0
    Usage
  • 17
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    18
    • Citation Indexes
      18
  • Captures
    17

Article Description

Nanostructured superlattices have been the focus of many researchers due to their physical and manipulatable properties. They aim to find promising materials for new electronic and thermoelectric devices. In the present study, we investigate the thermal conductivity of two-dimensional (2D) C 3 N/ C 2 N superlattices using non-equilibrium molecular dynamics. We analyze the dependence of thermal conductivity on the total length, temperature, and the temperature difference between thermal baths for the superlattices. The minimum thermal conductivity and the phonon mean free path at a superlattice period of 5.2 nm are 23.2 W/m.K and 24.7 nm, respectively. Our results show that at a specific total length, as the period increases, the number of interfaces decreases, thus the total thermal resistance decreases, and the effective thermal conductivity of the system increases. We found that at long lengths ( Lx >80 nm), the high-frequency and low-wavelength phonons are scattered throughout the interfaces, while at short lengths, there is a wave interference that reduces the thermal conductivity. The combination of these two effects, i.e., the wave interference and the interface scattering, is the reason for the existence of a minimum thermal conductivity in superlattices.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know