Modeling of transition from stratified flow to condensation-induced water hammer in horizontal steam-water pipes
International Journal of Heat and Mass Transfer, ISSN: 0017-9310, Vol: 212, Page: 124221
2023
- 7Citations
- 8Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Kelvin-Helmholtz (K-H) instability theory is extensively used to predict the transition from stratified flow to slug flow. This study developed a one-dimensional (1-D) model based on K-H theory and considered the variation of axial wave amplitude to predict the transition from stratified flow to condensation-induced water hammer (CIWH). The prediction results of the present model were compared with the experimental data and existing models. The comparison shows that the present model could reasonably predict critical instability, which is the boundary between stratified flow and CIWH. Critical instability is divided into three types according to the wave amplitude of critical instability. Critical instability occurs at the upper limit, middle, and starting point of the exponential growth of wave amplitude under low, medium, and high liquid levels. The effects of major parameters, including liquid level, water temperature, pipe diameter, and pipe length, on the critical inlet steam Froude number and position of critical instability were analyzed. When the liquid level increases, the critical inlet steam Froude number decreases, then increases, and then decreases, and the position of critical instability moves downstream, then upstream, and finally turns to the steam inlet. The effect of water temperature, pipe diameter, and pipe length on the critical instability depends on the liquid level and is complex.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0017931023003733; http://dx.doi.org/10.1016/j.ijheatmasstransfer.2023.124221; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85159213948&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0017931023003733; https://dx.doi.org/10.1016/j.ijheatmasstransfer.2023.124221
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know