PlumX Metrics
Embed PlumX Metrics

Impacts of inhomogeneous clamping force on local performance and liquid water formation in polymer electrolyte fuel cells

International Journal of Hydrogen Energy, ISSN: 0360-3199, Vol: 42, Issue: 30, Page: 19227-19245
2017
  • 26
    Citations
  • 0
    Usage
  • 28
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    26
    • Citation Indexes
      26
  • Captures
    28

Article Description

A two dimensional, half-cell, non-isothermal, multi-phase model of a polymer electrolyte fuel cell (PEFC) is developed. The model accounts for the acting clamping force on the cell with accompanying effects on gas transport properties and contact resistances. Spatial variations of anisotropic structural and physical properties of gas diffusion layers (GDLs) in both in-plane and through-plane directions are considered. Designed mechanistic model is compared and validated with the experimental data for voltage-current characteristics and channel-rib current density distribution for the first time. Significant changes are observed in local gas and water concentrations as well as current density profiles with respect to cell compression and humidity ratios of entrant gases. Compression exacerbates the liquid saturation under the rib in consequence of porosity and permeability reduction. Under compression, phase change rate increases in the cell; degree of supersaturation under the channel escalates leading to higher condensation rate while degree of undersaturation under the rib increases leading to higher evaporation rate.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know