Advancing direct ethanol fuel cell operation at intermediate temperature by combining Nafion-hybrid electrolyte and well-alloyed PtSn/C electrocatalyst
International Journal of Hydrogen Energy, ISSN: 0360-3199, Vol: 46, Issue: 24, Page: 13252-13264
2021
- 20Citations
- 42Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The advancement of direct ethanol fuel cell (DEFC) represents a real challenge to electrochemical science because ethanol changes significantly the triple phase boundary properties such as the redox reactions and the proton transport. Ethanol molecules promote poor fuel cell performance due to their slow oxidation rate, reduction of the proton transport due to high affinity of ethanol by the membrane, and due to mixed potential when the ethanol molecules reach the cathode by crossover. DEFC performance has been improved by advances in the membranes, e.g., low ethanol crossover polymer composites, or electrode materials, e.g., binary/ternary catalysts. Herein, high temperature (130 °C) DEFC tests were systematically investigated by using optimized electrode and electrolyte materials: Nafion-SiO 2 hybrid electrolyte and well-alloyed PtSn/C electrocatalyst. By optimizing both the electrode and the electrolyte in conjunction, DEFCs operating at 130 °C exhibited a threefold increase on performance as compared to standard commercially available materials.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0360319921002457; http://dx.doi.org/10.1016/j.ijhydene.2021.01.123; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85101329751&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0360319921002457; https://dx.doi.org/10.1016/j.ijhydene.2021.01.123
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know