Photo-electrochemistry of metallic titanium/mixed phase titanium oxide
International Journal of Hydrogen Energy, ISSN: 0360-3199, Vol: 46, Issue: 37, Page: 19433-19445
2021
- 91Citations
- 33Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this study, the effect of potassium hydroxide concentration in anodization bath, anodization time, and calcination temperature on the photo-electrochemical behavior of metallic titanium/mixed phase titanium oxide is investigated. Further, the phase structure of a titanium oxide photocatalyst prepared on a titanium electrode through a high-voltage anodization method is examined. The study exploits photo-electrochemical, Fourier transform infrared spectroscopy attenuated total reflectance (FTIR–ATR), X-ray diffraction, and Raman spectroscopic methods to obtain better insights into the mechanism of mixed-phase titanium oxide formation. In this regard, the photo-electrochemical properties of the photocatalysts prepared in single excitation energy, violet light (410 nm), were investigated. The anodization time and the potassium hydroxide concentration in the anodization bath have significant effects on the photo-electrochemical properties of the photocatalysts. The experiments show that the effect of potassium hydroxide concentration is a function of the anodization potential applied, demonstrating different patterns as the anodization potential changes. Furthermore, FTIR-ATR, X-ray diffraction, and Raman spectroscopic studies reveal that the extended anodization times decrease the population of OH-containing groups, leading to lower photo-electrochemical performance. On the other hand, the formation of anatase phases becomes more favorable only in the extended anodization times before application of the calcination process. Additionally, the calcination temperature has a significant impact on the anatase to rutile ratio. Finally, increasing potassium hydroxide concentration leads to the formation of an amorphous titanium oxide layer. It can be concluded that the obtained information might have a significant impact on the preparation of titanium oxide and other metal oxide photocatalysts through the high voltage anodization process.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0360319921010181; http://dx.doi.org/10.1016/j.ijhydene.2021.03.106; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85103959186&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0360319921010181; https://api.elsevier.com/content/article/PII:S0360319921010181?httpAccept=text/xml; https://api.elsevier.com/content/article/PII:S0360319921010181?httpAccept=text/plain; https://dul.usage.elsevier.com/doi/; https://dx.doi.org/10.1016/j.ijhydene.2021.03.106
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know