Simulation of chlorine-mediated autothermal methane pyrolysis for hydrogen production
International Journal of Hydrogen Energy, ISSN: 0360-3199, Vol: 48, Issue: 8, Page: 2949-2958
2023
- 3Citations
- 24Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Given the present need to access a large-scale supply of hydrogen in the short-term, methane pyrolysis for hydrogen production could be utilized as a transition technology, since existing natural gas infrastructures can be exploited. Here, a novel chlorine-mediated pyrolysis process is presented that overcomes the considerable challenges posed by the input of external energy in the direct methane pyrolysis. By operating at a methane to chlorine inlet ratio of roughly 1.5 to 1, the heat released by the exothermic chlorination reaction can be leveraged to generate hydrogen by pyrolysis in addition to the hydrogen chloride. A downstream hydrochloric acid electrolysis enables the chlorine to be recycled and produces further hydrogen resulting in an overall hydrogen yield of 99%. An approximate cost calculation highlights the main costs of the process and reveals the high outlays for the electrolysis unit.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0360319922047917; http://dx.doi.org/10.1016/j.ijhydene.2022.10.122; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85142784257&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0360319922047917; https://dx.doi.org/10.1016/j.ijhydene.2022.10.122
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know