A reduced-scale experimental study of dispersion characteristics of hydrogen leakage in an underground parking garage
International Journal of Hydrogen Energy, ISSN: 0360-3199, Vol: 48, Issue: 44, Page: 16936-16948
2023
- 31Citations
- 23Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A medium-scale model (1/10) of an underground parking garage is designed and built to study the characteristics of the release and dispersion of hydrogen leaked from hydrogen fuel cell vehicles (HFCVs) in underground garages. Helium is used in place of hydrogen for safety reasons. The helium release experiments are conducted and the variations in helium concentrations at different locations and times in the garage model are obtained. The influence mechanisms of the leakage flow rate and nozzle diameter on the spatial and temporal distributions of the helium concentration are revealed. The experimental results show that the initial release rate of helium is the key factor affecting the distribution of helium concentrations. Both leakage flow rate and nozzle diameter have a significant influence on helium concentrations by affecting the initial release rate. If the release time is long enough, the helium concentrations will experience three stages during release, namely, rapid growth, slow growth and relatively stable. Furthermore, the beams of the garage can reduce the area on the ceiling where the hydrogen concentration exceeds the lower flammable limit (LFL). On the other hand, the beams can make it easier for local hydrogen concentrations to reach the LFL. This work can provide theoretical support for the design and construction of underground parking garages and the arrangement of hydrogen detectors.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0360319923003099; http://dx.doi.org/10.1016/j.ijhydene.2023.01.170; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85149709090&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0360319923003099; https://dx.doi.org/10.1016/j.ijhydene.2023.01.170
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know