Room-temperature defect-engineered titania: An efficient platform for Pt single atom decoration for photocatalytic H 2 evolution
International Journal of Hydrogen Energy, ISSN: 0360-3199, Vol: 51, Page: 222-233
2024
- 11Citations
- 18Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Single-atom (SA) decoration represents the forefront of technological advancements in heterogeneous catalysis, harnessing the exceptional performance of catalysts at the atomic level. However, the high surface energy of isolated atoms often leads to agglomeration, resulting in the formation of nanoparticles. To address this challenge, trapping single atoms within surface defects has emerged as an effective strategy for atom immobilization. Conventional defect engineering techniques, such as high-temperature thermal reduction, suffer from adverse effects, such as sintering of the support material. In this study, we introduce a novel and facile room-temperature sonochemical method to induce well-defined atomic-scale defects on the surface of highly active TiO 2 nanosheets, predominantly exposing the (001) facet. By introducing a highly diluted Pt precursor to the ultrasonicated nanosheet slurry, isolated Pt atoms were selectively trapped within freshly formed defects. Remarkably, the resulting Pt single atom decorated samples exhibit a striking 100-fold increase in photocatalytic H 2 evolution compared to pristine TiO 2 nanosheets. Notably, we demonstrate that the density of the generated defects and the loading of Pt single atoms can be precisely tailored by adjusting the sonication time. Atomic-scale characterization, complemented by density functional theory (DFT) calculations, provides compelling evidence of the strong bonding between Pt single atoms and the defects generated via sonochemical treatment. Our findings offer a promising approach for defect engineering and SA decoration on a larger scale, underscoring the significant potential of this room-temperature technique for heterogeneous catalysis.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0360319923041289; http://dx.doi.org/10.1016/j.ijhydene.2023.08.126; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85171366616&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0360319923041289; https://dx.doi.org/10.1016/j.ijhydene.2023.08.126
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know