A fast POD prediction method for hydrogen leakage at different pressures
International Journal of Hydrogen Energy, ISSN: 0360-3199, Vol: 49, Page: 1391-1404
2024
- 6Citations
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The complexity of hydrogen leakage at different pressures leads to the challenge of developing a prediction method for both low pressure and supercritical pressure hydrogen leakage. In this paper, a reduced-order model (ROM) based on proper orthogonal decomposition (POD) is developed to rapidly predict the hydrogen dispersion caused by leakage in small holes at different pressures. The subsonic and underexpanded hydrogen jets are simulated and verified with experimental data. Numerical results of some pressures are collected as POD snapshots and POD interpolation methods are performed to predict the velocity and hydrogen concentration distributions at desired unsampled pressures. Different sample plans with different sampling intervals and sample numbers are investigated. POD-linear, POD-spline, and POD-RBF (radial basis function) interpolations are compared. The results show that the POD-linear and POD-spline methods can accurately predict the velocity and hydrogen fraction at different pressures, and both are better than the POD-RBF method. The relative errors in predicting the hydrogen mole fraction between the POD-linear and POD-spline methods and the simulation results are 2.26% and 2.37%, respectively. Best of all, the POD interpolation method proposed in this work significantly reduces the time required for prediction, costing only 3.3 ms.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0360319923049807; http://dx.doi.org/10.1016/j.ijhydene.2023.09.282; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85173729750&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0360319923049807; https://dx.doi.org/10.1016/j.ijhydene.2023.09.282
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know