Determination of ultimate operating pressure for hydrogen storage in high impurity salt caverns based on gas-structure-interaction model
International Journal of Hydrogen Energy, ISSN: 0360-3199, Vol: 113, Page: 685-702
2025
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Article Description
Salt cavern hydrogen storage (SCHS) represents one of the most promising options for the large-scale underground storage of hydrogen. A complex gas-structure interaction (GSI) occurs between hydrogen as a gas and salt caverns. In this paper, a hydrogen permeation GSI model considering creep of surrounding rock is proposed, and the effects of the variation of the lower and upper limits of internal hydrogen pressure (IHP) on the tightness and stability of hydrogen storage in the S6 salt cavern are discussed. The findings indicate that as the lower limit of IHP diminishes, both the hydrogen permeability and the maximum displacement exhibit an upward trend. Conversely, as the upper limit of IHP rises, the hydrogen permeability increases while the maximum displacement declines. For S6 salt caverns, it is imperative that the upper limit IHP does not fall below 7 MPa, and the lower limit IHP should not be less than 16 MPa and not be more than 18 MPa. Furthermore, the permeation percentage of SCHS increases with the interlayer permeability, exhibiting a clear nonlinear relationship. When the permeability of the interlayer is 1e −18 m 2, the permeation percentage after 10 years of operation is 21.3%, which is more than twice the critical value. This indicates that S6 cavern hydrogen storage is not feasible when the interlayer permeability is greater than 1e −18 m 2.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know